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Analysis of Linear and Nonlinear QSAR Data Using Neural Networks
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The use of feed forward back propagation neural networks to perform the equivalent of multiple
linear regression has been examined using artificial structured data sets and real literature
data. Their predictive ability has been assessed using leave-one-out cross-validation and
training/test set protocols. While networks have been shown to fit data sets well, they appear
to suffer from a number of disadvantages. In particular, they have performed poorly in
prediction for the QSAR data examined here, they are susceptible to chance effects, and the
relationships developed by the networks are difficult to interpret. This investigation reports
results for one particular form of artificial neural network; other architectures and applications,

however, may be more suitable.

Introduction

The use of neural networks in the field of chemistry
has grown considerably! since their first applications
were described for process control? and protein second-
ary structure prediction.34 Applications have now been
found for the analysis of spectra, prediction of chemical
reactivity, electrostatic potentials, and quantitative
structure—activity relationships (QSAR) (see ref 5).
Networks have been able to perform established com-
puting tasks as well as tackling complex problem solving
using their pattern recognition abilities.

One of the most interesting uses of neural networks
in chemistry is their application in structure—property
correlations (SPC) and QSAR (see reviews 1, 6—8). A
considerable amount of research has been performed to
refine the methodology, including the development of
improved network architectures and training algo-
rithms,9-16

One of the earliest recognized problems using neural
networks for QSAR data analysis was the phenomenon
of over-fitting.® Using a series of dihydrofolate reduc-
tase inhibitors, Andrea and Kalayeh® suggested that the
ratio of the number of compounds to network connec-
tions (defined as the parameter o%) should be greater
than 1.0, and in their study they found that the optimal
value for ¢ was 2.0. Models with a ¢ value greater than
2.2 performed poorly in predictions, presumably because
they lacked sufficient connections to be able to develop
the relevant rules. Models employing ¢ values less than
1.8, on the other hand, appeared to overfit the data since
they explained the training set well but were poor in
prediction.

Our own investigations into the use of neural net-
works for QSAR data analysis have concentrated pri-
marily on the problem of chance effects.®1012 These
concerns were raised from some early uses of networks
for QSAR where the number of connections in the
network far exceeded the number of compounds under
consideration.!”!® It was possible that the presence of
too many connections in a network may not only allow
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chance correlations to occur but may also result in over-
fitting. To investigate this we used random numbers
as input data for a series of simulated QSAR data
analyses using networks. The results demonstrated
that the networks were able to train to successfully
reproduce the values of a random target. The network
was in effect, “memorizing” these data, and guidelines
were suggested to minimize chance effects and optimize
the performance of the technique. These guidelines,
however, were generated using random numbers. This
is, of course, a nonideal situation as real data are
structured and the predictive nature of a trained
network cannot be assessed using random numbers.
This report describes our investigations into the use of
neural networks to perform multiple linear regression
(MLR) using structured data files and four previously
published QSAR studies. Our intentions for this work
were 2-fold. Firstly, we hoped to provide guidelines for
QSAR data analysis using neural networks based on the
properties of structured data and real data. These
guidelines should be more relevant than those developed
using random numbers.1%12 Qur second aim was to
assess the extent to which neural networks are able to
carry out regression analysis.

Methods

The data sets used in this work comprised artificial
“structured” data and “real” data abstracted from the
literature as described below:

Structured Data Sets. All structured data sets
were generated to have four input variables (indepen-
dent variables) and a target value (dependent variable).
While we have used the term “structured” here, this
indicates a relationship between the input variables and
the target. Unlike real data sets, there are virtually
no relationships between the independent variables
themselves. The target was generated from the input
variables to have a specific structure (e.g., linear or
inclusion of a quadratic term, etc.). In some cases not
all the input variables were used to generate the target,
and where an indicator variable was required, this was
created using a separate set of random numbers (see
below). In addition, “noise” was included by adding a
small random number to the target so as to generate
data sets which did not have a perfect correlation
between the dependent and independent variables, i.e.,
the networks would have the opportunity to perform
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better or worse than MLR. The four independent
variables consisted of random numbers scaled between
0.2 and 0.8 generated using the RS1 data analysis
package (BBN software, Staines, UK). Following the
generation of the target variable this was then scaled
between 0.2 and 0.8. Output values from the BIOPROP
package!? fall in the range 0.0—1.0; thus, scaling the
target between 0.2 and 0.8 allows the network to
extrapolate beyond the scaled range. For each of the
four experiments listed below, five data files were
generated consisting of 65 cases (i.e., compounds). The
first 50 cases were used for training and cross-validation
purposes, and the remaining 15 were used as a test set.
Results described here are the average of the five files
for each of the following four simulated QSAR scenarios.

Linear. All four variables were used to generate the
target variable. Noise was added to keep the relation-
ship between the four independent variables and the
target to an R? of about 0.85, i.e.,

target = Vi-w + Vyx + Vgy + Vez + noise

where Vi, Vy, V3, V, are the four independent variables;
w, x, ¥, z are the coefficients; and noise is a random
number.

Indicator. Three variables plus an indicator (1 or
0) were employed to generate the target. The files used
for network training did not, however, include the
indicator variable. One feature of networks is their
ability to replicate the brain’s capacity for pattern
recognition. Information processing by networks has
demonstrated that they can learn complex “nonlinear”
relationships for problem solving, and this is seen as
one of their major advantages. The omission of the
indicator variable in this experiment is intended to
investigate this claim with particular regard to the
analysis of QSAR data sets.® To maintain the input of
four independent variables, a separate column of ran-
dom numbers was used in place of the indicator vari-
able. Noise was added to keep the relationship between
the indicator and three independent variables and the
target to an R2 of about 0.85, i.e,,

target = Vw + Vyx + Vg + indicatorz + noise

[The indicator was generated by using a separate set of
65 random numbers ranged between 0.0 and 1.0. If a
number fell below 0.5, the indicator was given a value
of 0.0, and if the number was 0.5 or greater, then the
indicator was given a value of 1.0.]

Quadratic. The target was generated using three
variables which included the square of one of the
variables. For training the quadratic term was not
included (i.e., only the original column of random
numbers and not the square of this column). To keep
the number of input variables to four, an additional two
sets of random numbers were included for network
training, i.e.,

target = V,w + (V)?x + Vv + noise

Quadratic plus Indicator. The target was gener-
ated using four variables which includes the square of
one of the variables and an indicator variable. For
training purposes the indicator was not used, and to
keep four inputs, an additional column of random
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Table 1. MLR Results Using Real QSAR Data Sets®

cross-
validated
no. equation n R? s F R2

Linear22
log Pexpt = 0.400ca1c — 37 0.826 0.6956 52.10
0.46u +
0.33E(HOMO) — 6.06
1 log Pexpt = 0.4120ca1c —
0.359 + 0.384E-
(HOMO) — 7.115

37 0.847 0.609 60.8 0.784

Indicator?!

log(1/C) = 0.457 + 38 0.929 0.264 17.1
1.05I — 0.48MRy®

2 log(1/C) = 0.4247 +
1.0907 — 0.495MRy +
3.374

3 log(1/C) = 0.4247 +
0.165MRy + 3.494

Quadratic?0
log(1/D4o) = —1.40R,2 — 50 0.828 0.25 67.9
0.42R, + 0.71pK, +
0.39
4 log(1/Dy) = —1.42R,2 — 50 0.821 0.252 70.2 0.789
0.43Rp, + 0.70pK, +

38 0.931 0.259 151.9 0.916

38 0.835 0.393  88.87

0.36
5 log(1/Dso) = —1.06Rm + 50 0.709 0.317 57.23
0.73pK, + 0.02

Quadratic plus Indicator?!
log(1/C) = 0.827'3 — 34 0.878 0.343 13.3
0.117'32 — 0.97MRy +
0.91] + 4.47
6 log(1/C)=0.84s'3 —
0.117's2 — 0.97MRy +
0.96 + 4.40
log(1/C) = 0.3473 —
0.03MRy + 4.47

@ Equations 1, 2, 4, 6 represent our own work repeating the MLR
analyses reported previously. In these examples, small differences
were found in the coefficients and constants of the original
equations to our own calculations. These often small differences
may be due to computer rounding errors or to typographical errors
in the original paper (data tables were carefully checked against
the originals to avoid errors). ® The constant value was not
documented; presumably an omission.

34 0.837 0420 37.1 0.781

-3

34 0.430 0.759 11.7

numbers was included for input to network training.
Noise was added to keep the relationship between the
indicator and three independent variables, and the
target to an R? of about 0.83,

target = V,w + (V)?x + Vyy + indicatorz + noise

[The indicator was generated as above.]

QSAR Data Sets. The real QSAR data sets chosen
for this study represent a number of different, commonly
encountered, QSAR models.20-22 These examples were
chosen because they represented a particular form of
QSAR model (linear, linear with indicator, quadratic,
etc.), data was available in the original report and the
data set was of a ‘useful’ size. Table 1 lists each of the
four data sets along with the originally published MLR
equations and cross-validated correlation coefficients
calculated using a leave-one-out (LOO) procedure. These
four examples contain variously structured data sets
ranging from linear to a quadratic equation including
an indicator variable.

Neural Network Implementation. Neural net-
works were constructed using the BIOPROP program!?
which employs a command language allowing the
automation of network simulation (input/output/train-
ing/saving, etc.) by the use of script files. All networks
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Chart 1

! EXAMPLE BIOPROP TRAINING SCRIPT (Non-Interactive Session)
! Comments are placed aftera “!" symbol
! Training of the dataset. Effect of changing the number of hidden layer units

set ninputs 4
set noutputs 1
set $data filename
set #maxiter 5000

! number of input units =4

! number of outputs units =1

! $data = file containing input/target information
! maxiter = maximum number of training cycles

openf output_results_file ! open file to contain output results

log logfile.dat ! a file to log the commands used
readp $data 1 ! open file containing input/target information
printf $data ! print filename into output_results_file

! loop to alter the number of hidden layer units from | 10 10
for #hidden 1 10
set #bestcorr 0

! initialize value of variable bestcorr

set nhidden #hidden ! set number of hidden layer units to variable
! #hidden

! loop to initialize the weights 5 times (i.e training for each hidden layer will run
! through this loop to initialize the connection weights each time)

for #init1 5 ! loop 5 times to initialize weights
! except first run through
if #init gt 1.0
initwts ! initwts initializes the connection weights to
! small random values
endif

! TRAIN The following steps train the network keeping a record of the
! best results. Pertubation of the connection weights is performed as well as
! restarting the networks to find the global minimum.
trainc #maxiter
testf $data 0 1
! corr( 1] is a variable (internal) for the correlation between the output and target
if corr[1] gt #bestcorr
set #bestcorr corr(1]
endif

! SMALL PERTUBATION OF THE CONNECTION WEIGHTS (i.e shake 0.2)

shake 0.2

! TRAIN
trainc #maxiter
testf $data 0 1

if corr[1] gt #bestcorr
set #bestcorr corr[1)
endif

were trained using the back propagation (BP) method
using a conjugate gradient minimizer. Traditional BP
usually employs a simple gradient descent technique??
to reach convergence. The conjugate gradient method
used by BIOPROP provides faster network training
compared to traditional BP methods. Hertz and co-
workers?4 provide a theoretical discussion of the imple-
mentation of the conjugate gradient method to neural
network training. Several detailed descriptions of the
general theory behind neural networks have already
been published, and these can be found in refs 9 and
23-25.

Training Protocols. One problem that has been
encountered during network training is that they can
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! MODERATE PERTUBATION OF CONNECTION WEIGHTS

shake 1.5

! TRAIN
trainc #maxiter
testf $data 0 1

if corr[1] gt #bestcorr
set #bestcorr corr(1]
endif

! SMALL PERTUBATION OF THE CONNECTION WEIGHTS

shake 0.2

I TRAIN
trainc #maxiter
testf $data 0 1

if corr[1] gt #bestcorr
set #bestcorr corr[1]
endif

! LARGE PERTUBATION OF THE CONNECTION WEIGHTS

shake 3.0

! TRAIN
trainc #maxiter
testf $data 0 1

it corr[1] gt #bestcorr
set #bestcorr corr(1]
endif

! SMALL PERTUBATION OF THE CONNECTION WEIGHTS
shake 0.2

! TRAIN
trainc #maxiter
testf $data 0 1
if corr[1] gt #bestcorr
set #bestcorr corr(1)
endif
next ! end of loop for #init to initialize weights

! square the best result to give the correlation coefficient

pow #b #bestcorr 2.0

! variable #b contains square of #bestcorr

printf hidden layer units #hidden R*2 #b ! print correlation coefficient
! to output_results_file

next ! end of loop for incrementing number of hidden layer units
closef ! close the output_results_file

log ! close logging of session

quit ! finish BIOPROP session

fall into so called “local minima”. Attempts to overcome
this problem include perturbation of the weights con-
necting the units in the network, followed by further
training, or reinitialization, of the connection weights
and retraining. A simple check on the total error will
indicate which minimum is the lowest. The training
procedures employed here used both approaches to try
and locate the global minimum (Chart 1). While there
can be no certainty that the final model computed is
the global minimum (if indeed one exists), it is felt that
this approach was sufficiently exhaustive. At the
completion of training, the target and output results
from the network were compared to provide a correla-
tion coefficient.
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Neural networks were constructed employing a single
hidden layer and one output unit to perform the
equivalent of regression analysis. For each data set the
number of hidden units was varied to examine the effect
of changing ¢ on the correlation coefficient. This
involved a hidden layer containing 1 unit up to a
maximum of 16 corresponding to a minimum g value of
about 0.6. In three of the four QSAR data sets (both
structured and real), either an indicator variable or a
squared term or both were present in the original
equations. These “nonlinear” terms were not included
for network training. The removal of these properties
was aimed at allowing the network to exploit its ability
to develop “nonlinear” relationships without these being
specifically stated.

Cross-Validation. In addition to simple training
procedures, cross-validation was used to monitor predic-
itive performance. Both leave-one-out (LOO) and leave-
N-examples-out (cf. ref 26) procedures were conducted.
For the random number structured data sets LOO was
not performed as the computation time required was
excessive (n.b. the results presented here are the
average of five separate data sets). A leave-N-out
procedure was employed setting N to 5 (i.e., leave-10%-
out) while the real data sets were split into 10 ap-
proximately equal groups. In the case of the four real
QSAR studies, choice of the compounds for each group
was based on hierarchical clustering of the compounds
as described by the physicochemical parameters. Hi-
erarchical clustering was performed using the multi-
variate statistics package ARTHUR (Infometrix, Inc.,
Seattle, WA). A similarity level was chosen which split
the compounds into four clusters, and representatives
from each were selected to create the 10 groups for
testing. Training and testing were continued until each
group had been left out (once) for test purposes.

Training/Test Sets. Another, and perhaps more
useful, method of determining the predictive ability of
a network is to leave out a number of compounds for
test purposes. For the structured data files, “com-
pounds” 51—65 were used for testing. Hierarchical
cluster analysis was used to select test compounds from
the real QSAR data sets (Tariq Andrea, personal com-
munication). Typically between 40 and 50% of the
compounds were removed from the data sets to create
test sets. A similarity level was used which split the
compounds into x clusters, where x is the number of test
compounds to be chosen. Representatives of each
cluster were then removed for testing. As one might
expect, these clusters often contain more than one
compound, for example Figure 1 shows a section of the
dendrogram for the quadratic data set. Network train-
ing for these data gave some unusual results (see below)
so that a second training/test set was generated as
indicated in the figure. A simple comparison of the
actual target values (dependent variables) and the
network outputs provided a correlation coefficient for
these test sets.

Results and Discussion

Our previous report on the use of neural networks
for QSAR data analysis gave guidelines based on results
using random numbers.!? In that study the data sets
used had 50 cases (i.e., 50 compounds) of five random
variables comprising four independent variables and one
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Figure 1. Diagram illustrating section of a dendrogram
produced by cluster analysis for the real quadratic QSAR data
set.2 Compounds are clustered according to their similarity
(six clusters are shown at the indicated similarity cutoff), and
membership of the two test sets are shown (1 or 2).

Table 2. Averaged Correlation Coefficient of Structured Data
Files Using MLR*

structure RZ (first 50 cases) RZ2(all 65 cases)
linear 0.847 0.854
indicator 0.837 0.843
quadratic 0.843 0.849
quadratic plus indicator 0.823 0.830

@ Results are the average of five data files for each structural
type.

dependent variable. At g values of less than 2.0 the
correlation coefficients obtained were above 0.74. This
clearly illustrated that, since the random numbers were
not related to one another, the networks were able to
fit complex but meaningless relationships between
“independent” and “dependent” variables. In order to
provide more relevant guidelines, and to assess the
performance of networks as “regression engines”, we
report the following results.

Structured Data Files. The relationship between
the independent variables and the target variable of the
structured data sets was verified using traditional MLR.
Table 2 shows the average correlation coefficient of the
five data sets for each of the four data structures
examined. These results demonstrate that the 50
training compounds have an R? value of approximately
0.84 which does not differ significantly to the results
for the entire data sets containing 65 cases (i.e., the 50
training compounds plus 15 test set compounds).

Linear. Figure 2 illustrates that network training
using a single hidden layer unit (¢ = 7.14) gave a
correlation coefficient equivalent to MLR (0.847). As
hidden layer units were added (i.e., ¢ decreases), the
correlation coefficient gradually increased from this
level to a value above 0.9. Predictive performance, on
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Figure 2. Plot illustrating the effect of changing ¢ on the
correlation coefficient for the linear structured data sets. Each
point is the average of five data sets, and the standard error
of the mean is given by the error bars. Training for the 50
cases is shown as the top curve (O). Two curves show the
predictive performance of the network using a leave-N-out (O)
cross-validation procedure (N = 10%) and the results of the
15 test cases (a). The averaged correlation coefficient (first
50 cases) for the five data sets determined using MLR (Table
2) is represented as the horizontal line indicated with R2.

the other hand, as measured by cross-validation and the
training/test set procedure decreased as ¢ decreased.
The apparent improvement in fitting as ¢ decreases is
in accord with our previous findings with random
numbers.’? The advantage of using structured data sets
such as these is that the predictive ability of the trained
networks may be assessed and, as we suspected,!?
performance decreases with increasing connections. It
was interesting to note that the leave-N-out cross-
validation results gave considerably lower correlation
coefficients than the 15 test compounds.

Indicator. Network training for the indicator data
sets demonstrated a steady increase in the correlation
coefficient from 0.511 to a value approaching 0.9 as ¢
decreased (Figure 3). At a ¢ value of 1.0 the network
had matched the correlation coefficient obtained using
MLR. The results from the leave-N-out cross-validation
and the 15 test set compounds fell below 0.5 and
decreased steadily as more hidden layer units were
added. These results show that given sufficient con-
nections the network was able to perform adequately
in training to match the required target. The results
testing the predictive ability of the network clearly
demonstrate that it is doing very poorly. This is due to
the network being unable to determine the value of the
indicator for the test compounds. These indicators were
generated using a separate column of random numbers
and as such no clues (i.e., interproperty correlations) are
built in to the data set for the network to develop
learning rules.

Quadratic. Like the results obtained for the linear
data sets, the correlation coefficient for network training
began at the value obtained by MLR and increased
steadily to a value above 0.9 as ¢ decreased (Figure 4).
For the 15 test compounds the network performed
reasonably well in prediction, however, the leave-N-out
cross-validation results showed poor predictive ability.
Good test set predictions by these networks is presum-
ably due to the fact that they have learned the quadratic
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Figure 3. Plot illustrating the effect of changing ¢ on the
correlation coefficient for the indicator structured data sets.
Each point is the average of five data sets, and the standard
error of the mean is given by the error bars. Training for the
50 cases is shown as the top curve (0). Two curves show the
predictive performance of the network using a leave-N-out (O)
cross-validation procedure (N = 10%) and the results of the
15 test cases (a). The averaged correlation coefficient (first
50 cases) for the five data sets determined using MLR (Table
2) is represented as the horizontal line indicated with R2.

1.09

0.91

0.81

0.7 1

0.6

0.5 - — T T 1

Figure 4. Plot illustrating the effect of changing ¢ on the
correlation coefficient for the quadratic structured data sets.
Each point is the average of five data sets and the standard
error of the mean is given by the error bars. Training for the
50 cases is shown as the top curve (0). Two curves show the
predictive performance of the network using a leave-N-out (O)
cross-validation procedure (N = 10%) and the results of the
15 test cases (a). The averaged correlation coefficient (first
50 cases) for the five data sets determined using MLR (Table
2) is represented as the horizontal line indicated with R2.

predictive rule, in the case of the linear data sets the
networks have learned additive rules.

Quadratic plus Indicator. Network training in-
creased from a value of 0.6 for one hidden unit to values
above that obtained using MLR as ¢ decreased (Figure
5). The network performed extremely poorly in predic-
tion for both cross-validation and the 15 test set
compounds. No doubt the poor performance is again
due to the network being unable to predict the value of
the indicator which was generated from a separate set
of random numbers.
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Figure 5. Plot illustrating the effect of changing ¢ on the
correlation coefficient for the quadratic plus indicator struc-
tured data sets. Each point is the average of five data sets
and the standard error of the mean is given by the error bars.
Training for the 50 cases is shown as the top curve (0). Two
curves show the predictive performance of the network using
a leave-N-out (O) cross-validation procedure (N = 10%) and
the results of the 15 test cases (a). The averaged correlation
coefficient (first 50 cases) for the five data sets determined
using MLR (Table 2) is shown as the horizontal line indicated
with R2,

Fitting random number data sets using neural net-
works is easy because the data contains no “real”
structure. This is why structured data sets were
examined. The structural data sets, however, suffer
from the problem that although they contain the
artificially imposed relationships between the input
variables and the target, they do not contain the
“natural” relationships that occur between the input
variables in a real data set. This study has therefore
chosen a number of real QSAR data sets to examine.

Real QSAR Examples. For each of the real QSAR
data sets, network training demonstrated that the
correlation coefficient increases with the addition of
hidden layer units (Figures 6—9). In only two cases did
the networks result in correlation coefficients higher
than those obtained using MLR (Figures 6, 9, eqs 1, 6,
Table 1). In the linear example, ¢ values less than 6.0
provided R? values exceeding that using MLR, while the
quadratic plus indicator data set exceeded the MLR
correlation coefficient at ¢ values less than 3.0. It
should be remembered that in our training procedures
the squared terms and indicator variables were not
provided as input to network training. The networks
have therefore found the rules associated with the
“nonlinear” relationships of the input properties to the
target data. To emphasize these results, the MLR
equations were also generated without the square or
indicator terms (equations, 3, 5, 7, Table 1), and these
values have been indicated on Figures 7—9. As can be
seen from these figures, in all three cases the networks
have performed well at ¢ values less than 8.0 and far
exceed the fit using MLR. One major difference be-
tween the structured and real data sets is that indicator
variables from real QSAR studies are used to mark
compounds from different structural classes or contain-
ing particular structural features and as such represent
“real data”. The purpose of our investigations has been
to examine the claims that neural networks are able to
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Figure 6. Plot showing the results of multiple linear regres-
sion using traditional statistics and neural networks for the
“linear” QSAR data set.2?2 The correlation coefficient has been
plotted against 9. The top curve represents training of the
data using networks employing a 3-n-1 architecture with the
data scaled between 0.2 and 0.8 (O). Testing the predictive
performance of the networks used cross-validation employing
both LOO (W) and leave-N-out (O) procedures (N was ap-
proximately 10%). The horizontal lines represent the results
obtained using traditional statistics listed in Table 1. The
cross-validation result using traditional statistics used a LOO
procedure.
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Figure 7. Plot showing the results of multiple linear regres-
sion using traditional statistics and neural networks for the
“indicator” QSAR data set.?! The correlation coefficient has
been plotted against ¢. The top curve represents training of
the data using networks employing a 2-n-1 architecture with
the data scaled between 0.2 and 0.8 (0). Testing the predictive
performance of the networks used cross-validation employing
both LOO (M) and leave-N-out (O) procedures (N was ap-
proximately 10%). The horizontal lines represent the results
obtained using traditional statistics listed in Table 1. In
addition, a line has been drawn showing the correlation
coefficient in which the indicator variable was omitted. The
cross-validation result using traditional statistics used a LOO
procedure.

perform statistical tasks better than traditional tech-
niques, and thus we have withheld indicator variables
and quadratic terms from the neural networks, We
have not trained networks which have included these
terms since our expectation is that they would perform
well at low values of ¢ (i.e., similar to the linear “real”
case).

Although the training results outperformed MLR in
two cases, this does not give any indication of the
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Figure 8. Plot showing the results of multiple linear regres-
sion using traditional statistics and neural networks for the
“quadratic” QSAR data set.2® The correlation coefficient has
been plotted against ¢. The top curve represents training of
the data using networks employing a 2-n-1 architecture with
the data scaled between 0.2 and 0.8 (O). Testing the predictive
performance of the networks used cross-validation employing
both LOO (W) and leave-N-out (O) procedures (N = 10%). The
horizontal lines represent the results obtained using tradi-
tional statistics listed in Table 1. In addition, a line has been
drawn showing the correlation coefficient in which the qua-
dratic variable was omitted. The cross-validation result using
traditional statistics used a LOO procedure.
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Figure 9. Plot showing the results of multiple linear regres-
sion using traditional statistics and neural networks for the
“quadratic plus indicator” QSAR data set.2! The correlation
coefficient has been plotted against ¢. The top curve repre-
sents training of the data using networks employing a 2-n-1
architecture with the data scaled between 0.2 and 0.8 (O).
Testing the predictive performance of the networks used cross-
validation employing both LOO (W) and leave-N-out (O)
procedures (N was approximately 10%). The horizontal lines
represent the results obtained using traditional statistics listed
in Table 1. In addition, a line has been drawn showing the
correlation coefficient in which the indicator and quadratic
variables were omitted. The cross-validation result using
traditional statistics used a LOO procedure.

predictive ability of the network. As for the structured
data sets, cross-validation provides some clues to pre-
dictive power, giving an indication of how well the
network predicts when N cases are left out of the
analysis. In this study we have performed two cross-
validation experiments where N = 1 and N = ap-
proximately 10%. These results are shown in Figures
6—9. Both methods gave similar results, and in only
the linear case did correlation coefficients rise above
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Figure 10. Diagram showing the training and test set results
using neural networks for the “linear” data set. Two trials
were conducted using separate sets of 17 test compounds
removed from the data set. Results are shown as the correla-
tion coefficient plotted against ¢ for training, trail 1 (0) and
trial 2 (a). Using these trained networks, predictions of
activity were made for the relevant test set which are also
shown as the correlation coefficient, trial 1 (W) and trial 2 (a).
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that obtained using MLR. The linear results also
differed from the nonlinear examples as the cross-
validated R? increased with additional hidden layer
units. In all cases the behavior of the cross-validated
results was variable at low values of ¢. Thus, although
the networks performed well in training, they did poorly
in prediction as measured by cross-validation. Argu-
ments may be put forward which suggest that these
results are a consequence of over-training and thus
highlight a shortcoming of the use of networks to
perform MLR. Conversely, networks are able to fit the
more complex data sets without the need to specify
nonlinear terms and appear to predict better than the
regression models without these variables.

A more effective way of testing predictive ability is
to use a train/test set procedure. The generation of test
and training sets requires careful consideration as both
sets should be representative of the entire data set.
Cross-validation, on the other hand, leaves every com-
pound in the set out once for testing, and unless the
data set is particularly well-behaved, in terms of the
disposition of compounds in parameter space, cross-
validation will select some very unsuitable (i.e., outlier)
compounds. In this work, hierarchical cluster analysis
was used to choose representative test compounds. To
illustrate this, Figure 1 shows a section of a dendrogram
highlighting the compounds chosen for testing. Where
more than one compound was present in a cluster, the
choice of a representative test compound was arbitrary.
Results for both the training and test sets using a
network regression are shown in Figures 10—13. The
linear example gives comparable results to the struc-
tured linear data sets (Figure 2) in that for trials 1 and
2 the correlation coefficient increases as the number of
hidden units is incremented (Figure 10). Similarly, the
trend for the test results is a reduction in correlation
coefficient as ¢ decreases.

Training for the indicator and quadratic plus indicator
data sets also shows a gradual increase in R2 as g
decreases (Figures 11 and 13). The test results are more
erratic and in a number of places the test results rose
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Figure 11. Diagram showing the training and test set results
using neural networks for the “indicator” data set. Two trials
were conducted using separate sets of 18 test compounds
removed from the data set. Results are shown as the correla-
tion coefficient plotted against ¢ for training, trial 1 (0) and
trial 2 (a). Using these trained networks, predictions of
activity were made for the relevant test set which are also
shown as the correlation coefficient, trial 1 (W) and trial 2 (a).
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Figure 12. Diagram showing the training and test sets
results using neural networks for the “quadratic” data set. Two
trials were conducted using separate sets of 18 test compounds
removed from the data set. Results are shown as the correla-
tion coefficient plotted against ¢ for training; trial 1 (O) and
trial 2 (a). Using these trained networks, predictions of
activity were made for the relevant test set which are also
shown as the correlation coefficient, trial 1 (W) and trial 2 (a).

above the levels of the training set. Interestingly, for
the first trial set for the quadratic case, the test results
far exceeded the R? values for the training set (Figure
12). This result was indeed surprising, and the experi-
ment was repeated following a check of the relevant
BIOPROP script file to ensure that the training and test
results had not been swapped. In addition, a second
training and test set were created to again repeat the
experiment. This second trial behaved as expected with
the test results falling below the training set (Figure
12). To further investigate this result we examined
plots of predicted (derived using eq 4, Table 1) and
observed values of the biological activity used for the
quadratic case marking the test compounds for trials 1
and 2, respectively (Figures 14, 15). At first sight, the
plots appeared to show that the test compounds chosen
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Figure 13. Diagram showing the training and test set results
using neural networks for the “quadratic plus indicator” data
set. Two trials were conducted using separate sets of 14 test
compounds removed from the data set. Results are shown as
the correlation coefficient plotted against ¢ for training, trial
1 (O) and trial 2 (a). Using these trained networks predictions
of activity were made for the relevant test set which are alse
shown as the correlation coefficient, trial 1 (W) and trial 2 (A).
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Figure 14. Plot of predicted against observed biological
activities for the real quadratic QSAR example derived using
eq 4, Table 1. Compounds represented with a (0) symbol was
used as test compounds for trial 1 and the remaining com-
pounds (M) comprised the training set.

were satisfactory representatives of the entire data set.
On closer inspection, however, it can be seen that for
trial 1, the test compounds fall closer to the line of
perfect prediction. As this test set does not include some
of the “outliers” that are present in the other set this
may explain the improved prediction results. A check
using MLR was carried out on both training and test
sets. Regression equations were derived for each of the
32 training set compounds, and the activity was pre-
dicted for the 18 test cases (Table 3). As can be seen,
the test set prediction for trial 1 gave a correlation
coefficient of 0.905, considerably higher than the cor-
relation coefficient of the training set. In accord with
the network results, the test set prediction for trial 2
gave a correlation coefficient lower than that of the
training set. The equations derived from the training
sets are shown in Table 3 where it can be seen that the
regression coefficients are considerably different.
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Figure 15. Plot of predicted against cobserved biclogical
activities for the real quadratic QSAR example derived using
eq 4, Table 1. Compounds represented with a (O) symbol were
used as test compounds for trial 2 and the remaining com-
pounds (M) comprised the training set.

Table 3. MLR Results for the Quadratic Training/Test Data

Sets
trial equation n R2 s F

1 training log(1/Dy) = —1.16Ry2 — 32 0.730 0.26 25.3
0.46R, + 0.66pK. + 0.58

1 test® 18 0.905

2 training log(1/Dyo) = —1.60Rm2 — 32 0.861 0.17 58.1
0.16R,, + 0.51pK, + 1.65

2 teste 18 0.800

@ The test set correlation coefficients were calculated by compar-
ing predicted results from the training set MLR equation with
observed results.

Conclusions

The results that we have found for both the structured
data sets and the real QSAR sets are broadly in
agreement with what we found using random number
data.1%12 That is to say, increasing the number of
connections in a network (i.e., decreasing o) leads to
higher correlation coefficients, and this may be why it
appeared that networks were out-performing traditional
methods in earlier reports. The advantage of using
structured data and real data is that it is possible to
test predictions. The predictive ability of the networks
was generally poor compared with how well they
performed in fitting.

Two of the most important aspects of quantitative
structure—activity relationship studies is that they are
able to explain biological activity in a series of com-
pounds and to predict activity in either test compounds
or novel targets. This has particular importance in the
pharmaceutical and agrochemical industries where a
QSAR may be used to assign synthetic priorities and
thus directly reduce costs. Consequently, we have
directed some effort to an assessment of the predictive
ability of neural networks. Leave-one-out cross-valida-
tion is an obvious way to check predictions but is not
necessarily the best; leave-N-out is more realistic but
introduces the complication of compound choice. The
training/test protocol is preferred, but we have demon-
strated the difficulty in the adequate choice of such sets,
even using a multivariate technique such as cluster
analysis.

The advantages of using neural networks to fit QSAR
data are that the functional form of the relationship
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does not have to be specified and that indicator variables
are not required in order to combine subsets of com-
pounds in one equation. The disadvantages of neural
networks are that it is difficult to assess importance/
contribution of individual terms, and there is no equiva-
lent to “fit” statistics as in regression. There are
dangers of chance effects, and it is not easy to identify
these in advance; in addition, it appears that networks
perform poorly in prediction. Of course, one aspect not
discussed here is the computation time required to set
up and train these neural networks. As might be
expected, the network results took considerably longer
to obtain than MLR (for example, some of the cross-
validation experiments took several hours to complete
on a Silicon Graphics 4D/35 workstation).

Choice of network architecture (number of hidden
units) is clearly critical and, from the data sets exam-
ined here, appears to be dataset dependent. In our
previous work!®12 we have shown there are critical o
values below which chance effects become a problem,
but it is not possible to give general guidelines for the
choice of ¢ values for the analysis of real data sets.

It appears to us that the disadvantages of neural
networks outweigh their advantages, at least for the
type of networks (feed forward back propagation) that
we have examined here. This is not to say that other
network architectures or applications other than MLR
may not prove of value in the investigation of the
complex relationships between chemical structure and
biological activity. For example, a neural network has
been shown to provide a novel method for the low-
dimensional display of multivariate data,2” and this has
been used with some success in the investigation of
QSAR’s 27.28
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