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The use of feed forward back propagation neural networks to perform the equivalent of multiple 
linear regression has been examined using artificial structured data sets and real literature 
data. Their predictive ability has been assessed using leave-one-out cross-validation and 
training/test set protocols. While networks have been shown to fit data sets well, they appear 
to suffer from a number of disadvantages. In particular, they have performed poorly in 
prediction for the QSAR data examined here, they are susceptible to chance effects, and the 
relationships developed by the networks are difficult to interpret. This investigation reports 
results for one particular form of artificial neural network; other architectures and applications, 
however, may be more suitable. 

Introduction 

The use of neural networks in the field of chemistry 
has grown considerably1 since their first applications 
were described for process control2 and protein second­
ary structure prediction.3,4 Applications have now been 
found for the analysis of spectra, prediction of chemical 
reactivity, electrostatic potentials, and quantitative 
structure-activity relationships (QSAR) (see ref 5). 
Networks have been able to perform established com­
puting tasks as well as tackling complex problem solving 
using their pattern recognition abilities. 

One of the most interesting uses of neural networks 
in chemistry is their application in structure—property 
correlations (SPC) and QSAR (see reviews 1, 6-8). A 
considerable amount of research has been performed to 
refine the methodology, including the development of 
improved network architectures and training algo­
rithms.9"16 

One of the earliest recognized problems using neural 
networks for QSAR data analysis was the phenomenon 
of over-fitting.9 Using a series of dihydrofolate reduc­
tase inhibitors, Andrea and Kalayeh9 suggested that the 
ratio of the number of compounds to network connec­
tions (defined as the parameter £>*) should be greater 
than 1.0, and in their study they found that the optimal 
value for Q was 2.0. Models with a Q value greater than 
2.2 performed poorly in predictions, presumably because 
they lacked sufficient connections to be able to develop 
the relevant rules. Models employing Q values less than 
1.8, on the other hand, appeared to overfit the data since 
they explained the training set well but were poor in 
prediction. 

Our own investigations into the use of neural net­
works for QSAR data analysis have concentrated pri­
marily on the problem of chance effects.8'10-12 These 
concerns were raised from some early uses of networks 
for QSAR where the number of connections in the 
network far exceeded the number of compounds under 
consideration.17'18 It was possible that the presence of 
too many connections in a network may not only allow 

* Present address: Chiroscience, No. 283 Cambridge Science Park, 
Milton Road, Cambridge, CB4 4WE U.K. Telephone: 0438 782102. 
Fax: 0438 782550. 

* The character rho is different than in previous publications due 
to a new PostScript character set. 

® Abstract published in Advance ACS Abstracts, September 15,1994. 

chance correlations to occur but may also result in over-
fitting. To investigate this we used random numbers 
as input data for a series of simulated QSAR data 
analyses using networks. The results demonstrated 
that the networks were able to train to successfully 
reproduce the values of a random target. The network 
was in effect, "memorizing" these data, and guidelines 
were suggested to minimize chance effects and optimize 
the performance of the technique. These guidelines, 
however, were generated using random numbers. This 
is, of course, a nonideal situation as real data are 
structured and the predictive nature of a trained 
network cannot be assessed using random numbers. 
This report describes our investigations into the use of 
neural networks to perform multiple linear regression 
(MLR) using structured data files and four previously 
published QSAR studies. Our intentions for this work 
were 2-fold. Firstly, we hoped to provide guidelines for 
QSAR data analysis using neural networks based on the 
properties of structured data and real data. These 
guidelines should be more relevant than those developed 
using random numbers.10'12 Our second aim was to 
assess the extent to which neural networks are able to 
carry out regression analysis. 

Methods 
The data sets used in this work comprised artificial 

"structured" data and "real" data abstracted from the 
literature as described below: 

Structured Data Sets. All structured data sets 
were generated to have four input variables (indepen­
dent variables) and a target value (dependent variable). 
While we have used the term "structured" here, this 
indicates a relationship between the input variables and 
the target. Unlike real data sets, there are virtually 
no relationships between the independent variables 
themselves. The target was generated from the input 
variables to have a specific structure (e.g., linear or 
inclusion of a quadratic term, etc.). In some cases not 
all the input variables were used to generate the target, 
and where an indicator variable was required, this was 
created using a separate set of random numbers (see 
below). In addition, "noise" was included by adding a 
small random number to the target so as to generate 
data sets which did not have a perfect correlation 
between the dependent and independent variables, i.e., 
the networks would have the opportunity to perform 
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better or worse than MLR. The four independent 
variables consisted of random numbers scaled between 
0.2 and 0.8 generated using the RSl data analysis 
package (BBN software, Staines, UK). Following the 
generation of the target variable this was then scaled 
between 0.2 and 0.8. Output values from the BIOPROP 
package19 fall in the range 0.0—1.0; thus, scaling the 
target between 0.2 and 0.8 allows the network to 
extrapolate beyond the scaled range. For each of the 
four experiments listed below, five data files were 
generated consisting of 65 cases (i.e., compounds). The 
first 50 cases were used for training and cross-validation 
purposes, and the remaining 15 were used as a test set. 
Results described here are the average of the five files 
for each of the following four simulated QSAR scenarios. 

Linear. All four variables were used to generate the 
target variable. Noise was added to keep the relation­
ship between the four independent variables and the 
target to an R2 of about 0.85, i.e., 

target = V1-W + V2-X + V3-y + V4-Z + noise 

where Vi, V%, Vz, V4 are the four independent variables; 
w, x, y, z are the coefficients; and noise is a random 
number. 

Indicator. Three variables plus an indicator (1 or 
0) were employed to generate the target. The files used 
for network training did not, however, include the 
indicator variable. One feature of networks is their 
ability to replicate the brain's capacity for pattern 
recognition. Information processing by networks has 
demonstrated that they can learn complex "nonlinear" 
relationships for problem solving, and this is seen as 
one of their major advantages. The omission of the 
indicator variable in this experiment is intended to 
investigate this claim with particular regard to the 
analysis of QSAR data sets.8 To maintain the input of 
four independent variables, a separate column of ran­
dom numbers was used in place of the indicator vari­
able. Noise was added to keep the relationship between 
the indicator and three independent variables and the 
target to an R2 of about 0.85, i.e., 

target = V1-W + V2-X + V3y + indicators + noise 

[The indicator was generated by using a separate set of 
65 random numbers ranged between 0.0 and 1.0. If a 
number fell below 0.5, the indicator was given a value 
of 0.0, and if the number was 0.5 or greater, then the 
indicator was given a value of 1.0.] 

Quadratic. The target was generated using three 
variables which included the square of one of the 
variables. For training the quadratic term was not 
included (i.e., only the original column of random 
numbers and not the square of this column). To keep 
the number of input variables to four, an additional two 
sets of random numbers were included for network 
training, i.e., 

target = V1-W + (V1)
2:* + V2-y + noise 

Quadratic plus Indicator. The target was gener­
ated using four variables which includes the square of 
one of the variables and an indicator variable. For 
training purposes the indicator was not used, and to 
keep four inputs, an additional column of random 

Table 1. MLR Results Using Real QSAR Data Sets0 

equation R2 

cross-
validated 

F R2 

Linear22 

1OgP6XPt = (UOaCa1C- 37 0.826 0.6956 52.10 
0A6fi + 
0.33£(HOMO) - 6.06 

1 log Pexpt = 0.412OtCaIc- 37 0.847 0.609 60.8 0.784 
0.359,« + 0.384JE-
(HOMO) - 7.115 

Indicator21 

log(l/C) = 0.45JT + 38 0.929 0.264 17.1 
1.05/ - 0.48MRy6 

2 log(l/C) = 0.424?r + 38 0.931 0.259 151.9 0.916 
1.090/ - 0.495MRY + 
3.374 

3 log(l/C) = 0.424?r + 38 0.835 0.393 88.87 
0.165MRY +3.494 

Quadratic20 

logd/D4o) = -1.40/Jm
2 - 50 0.828 0.25 67.9 

0.42iem + 0.7IpAa + 
0.39 

4 logU/D40) = -1.42Rm
2 - 50 0.821 0.252 70.2 0.789 

0.43/?m + 0.7OpK; + 
0.36 

5 logd/D4o) = -1.06Rm + 50 0.709 0.317 57.23 
0.73pA; + 0.02 

Quadratic plus Indicator21 

log(l/C) = 0.82^3 - 34 0.878 0.343 13.3 
0.1LY3

2-0.97MRY + 
0.91/ + 4.47 

6 logil/C) = 0.84^3 - 34 0.837 0.420 37.1 0.781 
0 . 1 1 ^ - 0 . 9 7 M R Y + 
0.96/ + 4.40 

7 logd/C) = 0.34^3 - 34 0.430 0.759 11.7 
0.03MRY + 4.47 

a Equations 1,2,4, 6 represent our own work repeating the MLR 
analyses reported previously. In these examples, small differences 
were found in the coefficients and constants of the original 
equations to our own calculations. These often small differences 
may be due to computer rounding errors or to typographical errors 
in the original paper (data tables were carefully checked against 
the originals to avoid errors). * The constant value was not 
documented; presumably an omission. 

numbers was included for input to network training. 
Noise was added to keep the relationship between the 
indicator and three independent variables, and the 
target to an R2 of about 0.83, 

target = V1-W + (V1)
2U + V2-y + indicators + noise 

[The indicator was generated as above.] 
QSAR Data Sets. The real QSAR data sets chosen 

for this study represent a number of different, commonly 
encountered, QSAR models.20-22 These examples were 
chosen because they represented a particular form of 
QSAR model (linear, linear with indicator, quadratic, 
etc.), data was available in the original report and the 
data set was of a 'useful' size. Table 1 lists each of the 
four data sets along with the originally published MLR 
equations and cross-validated correlation coefficients 
calculated using a leave-one-out (LOO) procedure. These 
four examples contain variously structured data sets 
ranging from linear to a quadratic equation including 
an indicator variable. 

Neural Network Implementation. Neural net­
works were constructed using the BIOPROP program19 

which employs a command language allowing the 
automation of network simulation (input/output/train­
ing/saving, etc.) by the use of script files. All networks 
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Chart 1 
! EXAMPLE BIOPROP TRAINING SCRIPT (Non-Interactive Session) 
! Comments are placed after a "!" symbol 
! Training of the dataset. Effect of changing the number of hidden layer units 

set ninputs 4 
set noutputs 1 
set $data filename 
set #maxiter 5000 

opent output_results_tile 
log logfile.dat 
readp Sdata 1 
printf Sdata 

! number of input units = 4 
! number of outputs units = 1 
! $data = file containing input/target information 
! maxiter = maximum number of training cycles 

open file to contain output results 
a file to log the commands used 
open file containing input/target information 
print filename into output_results_file 

! loop to alter the number of hidden layer units from 1 to 10 

tor#hidden 1 10 

set #bestcorr 0 ! initialize value of variable bestcorr 

set nhidden #hidden ! set number of hidden layer units to variable 
#hidden 

! loop to initialize the weights 5 times (i.e training for each hidden layer will run 
! through this loop to initialize the connection weights each time) 

for#init 1 5 

if #init gt 1.0 
initwts 

! loop 5 times to initialize weights 
except first run through 

! initwts initializes the connection weights to 
! small random values 

endif 

! TRAIN The following steps train the network keeping a record of the 
! best results. Pertubation of the connection weights is performed as well as 
! restarting the networks to find the global minimum. 

trainc #maxiter 
test) Sdata 0 1 

! corr[ 1) is a variable (internal) for the correlation between the output and target 
if corrjl] gt #bestcorr 
set #bestcorr corr[1] 
endif 

! SMALL PERTUBATION OF THE CONNECTION WEIGHTS (i.e shake 0.2) 

shake 0.2 

! TRAIN 
trainc #maxiter 
testf $data 0 1 

if corr[1] gt #bestcorr 
set #bestcorr corr[1] 

endif 

were trained using the back propagation (BP) method 
using a conjugate gradient minimizer. Traditional BP 
usually employs a simple gradient descent technique23 

to reach convergence. The conjugate gradient method 
used by BIOPROP provides faster network training 
compared to traditional BP methods. Hertz and co­
workers24 provide a theoretical discussion of the imple­
mentation of the conjugate gradient method to neural 
network training. Several detailed descriptions of the 
general theory behind neural networks have already 
been published, and these can be found in refs 9 and 
23-25. 

Training Protocols. One problem that has been 
encountered during network training is that they can 

! MODERATE PERTUBATION OF CONNECTION WEIGHTS 

shake 1.5 
! TRAIN 

trainc #maxiter 
testf Sdata 0 1 

if corr[1] gt #bestcorr 
set #bestcorr corr[1] 

endif 

! SMALL PERTUBATION OFTHE CONNECTION WEIGHTS 

shake 0.2 
! TRAIN 

trainc #maxiter 
testf $data 0 1 

if corr[1] gt #bestcorr 
set #bestcorr corr[1] 
endif 

! LARGE PERTUBATION OF THE CONNECTION WEIGHTS 

shake 3.0 
! TRAIN 

trainc #maxiter 
testf $data 0 1 

if corr[l] gt #bestcorr 
set#bestcorrcorr[1] 
endif 

! SMALL PERTUBATION OF THE CONNECTION WEIGHTS 

shake 0.2 
! TRAIN 

trainc #maxiter 
testf Sdata 0 1 

if corr[1J gt#bestcorr 
set #bestcorr corr[1] 
endif 

next ! end of loop for #init to initialize weights 

! square the best result to give the correlation coefficient 

pow #b #bestcorr 2.0 ! variable #b contains square of #bestcorr 

printf hidden layer units fhidden R*2 #b ! print correlation coefficient 
! to output_results_file 

next ! end of loop for incrementing number of hidden layer units 

closef ! close the output_results_file 

log ! close logging of session 

quit ! finish BIOPROP session 

fall into so called "local minima". Attempts to overcome 
this problem include perturbation of the weights con­
necting the units in the network, followed by further 
training, or reinitialization, of the connection weights 
and retraining. A simple check on the total error will 
indicate which minimum is the lowest. The training 
procedures employed here used both approaches to try 
and locate the global minimum (Chart 1). While there 
can be no certainty that the final model computed is 
the global minimum (if indeed one exists), it is felt that 
this approach was sufficiently exhaustive. At the 
completion of training, the target and output results 
from the network were compared to provide a correla­
tion coefficient. 



Analysis of QSAR Data Using Neural Networks 

Neural networks were constructed employing a single 
hidden layer and one output unit to perform the 
equivalent of regression analysis. For each data set the 
number of hidden units was varied to examine the effect 
of changing Q on the correlation coefficient. This 
involved a hidden layer containing 1 unit up to a 
maximum of 16 corresponding to a minimum Q value of 
about 0.6. In three of the four QSAR data sets (both 
structured and real), either an indicator variable or a 
squared term or both were present in the original 
equations. These "nonlinear" terms were not included 
for network training. The removal of these properties 
was aimed at allowing the network to exploit its ability 
to develop "nonlinear" relationships without these being 
specifically stated. 

Cross-Validation. In addition to simple training 
procedures, cross-validation was used to monitor predic-
itive performance. Both leave-one-out (LOO) and leave-
JV-examples-out (cf. ref 26) procedures were conducted. 
For the random number structured data sets LOO was 
not performed as the computation time required was 
excessive (n.b. the results presented here are the 
average of five separate data sets). A leave-iV-out 
procedure was employed setting AT to 5 (i.e., leave-10%-
out) while the real data sets were split into 10 ap­
proximately equal groups. In the case of the four real 
QSAR studies, choice of the compounds for each group 
was based on hierarchical clustering of the compounds 
as described by the physicochemical parameters. Hi­
erarchical clustering was performed using the multi­
variate statistics package ARTHUR (Infometrix, Inc., 
Seattle, WA). A similarity level was chosen which split 
the compounds into four clusters, and representatives 
from each were selected to create the 10 groups for 
testing. Training and testing were continued until each 
group had been left out (once) for test purposes. 

Training/Test Sets. Another, and perhaps more 
useful, method of determining the predictive ability of 
a network is to leave out a number of compounds for 
test purposes. For the structured data files, "com­
pounds" 51-65 were used for testing. Hierarchical 
cluster analysis was used to select test compounds from 
the real QSAR data sets (Tariq Andrea, personal com­
munication). Typically between 40 and 50% of the 
compounds were removed from the data sets to create 
test sets. A similarity level was used which split the 
compounds into x clusters, where x is the number of test 
compounds to be chosen. Representatives of each 
cluster were then removed for testing. As one might 
expect, these clusters often contain more than one 
compound, for example Figure 1 shows a section of the 
dendrogram for the quadratic data set. Network train­
ing for these data gave some unusual results (see below) 
so that a second training/test set was generated as 
indicated in the figure. A simple comparison of the 
actual target values (dependent variables) and the 
network outputs provided a correlation coefficient for 
these test sets. 

Results and Discussion 

Our previous report on the use of neural networks 
for QSAR data analysis gave guidelines based on results 
using random numbers.12 In that study the data sets 
used had 50 cases (i.e., 50 compounds) of five random 
variables comprising four independent variables and one 
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1.0 0.9 0.8 0.7 0.6 0.5 
I L I I I I 

2 ' 

Similarity cutoff 

Figure 1. Diagram illustrating section of a dendrogram 
produced by cluster analysis for the real quadratic QSAE data 
set.20 Compounds are clustered according to their similarity 
(six clusters are shown at the indicated similarity cutoff), and 
membership of the two test sets are shown (1 or 2). 

Table 2. Averaged Correlation Coefficient of Structured Data 
Files Using MLR" 

structure R2 (first 50 cases) R2 (all 65 cases) 
linear 0.847 0.854 
indicator 0.837 0.843 
quadratic 0.843 0.849 
quadratic plus indicator 0.823 0.830 

" Results are the average of five data files for each structural 
type. 

dependent variable. At Q values of less than 2.0 the 
correlation coefficients obtained were above 0.74. This 
clearly illustrated that, since the random numbers were 
not related to one another, the networks were able to 
fit complex but meaningless relationships between 
"independent" and "dependent" variables. In order to 
provide more relevant guidelines, and to assess the 
performance of networks as "regression engines", we 
report the following results. 

Structured Data Files. The relationship between 
the independent variables and the target variable of the 
structured data sets was verified using traditional MLR. 
Table 2 shows the average correlation coefficient of the 
five data sets for each of the four data structures 
examined. These results demonstrate that the 50 
training compounds have an R2 value of approximately 
0.84 which does not differ significantly to the results 
for the entire data sets containing 65 cases (i.e., the 50 
training compounds plus 15 test set compounds). 

Linear. Figure 2 illustrates that network training 
using a single hidden layer unit (Q = 7.14) gave a 
correlation coefficient equivalent to MLR (0.847). As 
hidden layer units were added (i.e., Q decreases), the 
correlation coefficient gradually increased from this 
level to a value above 0.9. Predictive performance, on 
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R 

i- v 

Q 
Figure 2. Plot illustrating the effect of changing Q on the 
correlation coefficient for the linear structured data sets. Each 
point is the average of five data sets, and the standard error 
of the mean is given by the error bars. Training for the 50 
cases is shown as the top curve (•). Two curves show the 
predictive performance of the network using a leave-iV-out (O) 
cross-validation procedure (N = 10%) and the results of the 
15 test cases (A). The averaged correlation coefficient (first 
50 cases) for the five data sets determined using MLR (Table 
2) is represented as the horizontal line indicated with R2. 

the other hand, as measured by cross-validation and the 
training/test set procedure decreased as Q decreased. 
The apparent improvement in fitting as Q decreases is 
in accord with our previous findings with random 
numbers.12 The advantage of using structured data sets 
such as these is that the predictive ability of the trained 
networks may be assessed and, as we suspected,12 

performance decreases with increasing connections. It 
was interesting to note that the leave-iV-out cross-
validation results gave considerably lower correlation 
coefficients than the 15 test compounds. 

Indicator. Network training for the indicator data 
sets demonstrated a steady increase in the correlation 
coefficient from 0.511 to a value approaching 0.9 as Q 
decreased (Figure 3). At a Q value of 1.0 the network 
had matched the correlation coefficient obtained using 
MLR. The results from the leave-iV-out cross-validation 
and the 15 test set compounds fell below 0.5 and 
decreased steadily as more hidden layer units were 
added. These results show that given sufficient con­
nections the network was able to perform adequately 
in training to match the required target. The results 
testing the predictive ability of the network clearly 
demonstrate that it is doing very poorly. This is due to 
the network being unable to determine the value of the 
indicator for the test compounds. These indicators were 
generated using a separate column of random numbers 
and as such no clues (i.e., interproperty correlations) are 
built in to the data set for the network to develop 
learning rules. 

Quadratic. Like the results obtained for the linear 
data sets, the correlation coefficient for network training 
began at the value obtained by MLR and increased 
steadily to a value above 0.9 as Q decreased (Figure 4). 
For the 15 test compounds the network performed 
reasonably well in prediction, however, the leave-iV-out 
cross-validation results showed poor predictive ability. 
Good test set predictions by these networks is presum­
ably due to the fact that they have learned the quadratic 

R 

Q 
Figure 3. Plot illustrating the effect of changing Q on the 
correlation coefficient for the indicator structured data sets. 
Each point is the average of five data sets, and the standard 
error of the mean is given by the error bars. Training for the 
50 cases is shown as the top curve (•). Two curves show the 
predictive performance of the network using a leave-AT-out (O) 
cross-validation procedure (N = 10%) and the results of the 
15 test cases (A). The averaged correlation coefficient (first 
50 cases) for the five data sets determined using MLR (Table 
2) is represented as the horizontal line indicated with R2. 

R' 

Q 
Figure 4. Plot illustrating the effect of changing g on the 
correlation coefficient for the quadratic structured data sets. 
Each point is the average of five data sets and the standard 
error of the mean is given by the error bars. Training for the 
50 cases is shown as the top curve (D). Two curves show the 
predictive performance of the network using a leave-iV-out (O) 
cross-validation procedure (N = 10%) and the results of the 
15 test cases (A). The averaged correlation coefficient (first 
50 cases) for the five data sets determined using MLR (Table 
2) is represented as the horizontal line indicated with R2. 

predictive rule, in the case of the linear data sets the 
networks have learned additive rules. 

Quadratic plus Indicator. Network training in­
creased from a value of 0.6 for one hidden unit to values 
above that obtained using MLR as Q decreased (Figure 
5). The network performed extremely poorly in predic­
tion for both cross-validation and the 15 test set 
compounds. No doubt the poor performance is again 
due to the network being unable to predict the value of 
the indicator which was generated from a separate set 
of random numbers. 
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1.0-

Q 
Figure 5. Plot illustrating the effect of changing Q on the 
correlation coefficient for the quadratic plus indicator struc­
tured data sets. Each point is the average of five data sets 
and the standard error of the mean is given by the error bars. 
Training for the 50 cases is shown as the top curve (D). Two 
curves show the predictive performance of the network using 
a leave-iV-out (O) cross-validation procedure (N = 10%) and 
the results of the 15 test cases (A). The averaged correlation 
coefficient (first 50 cases) for the five data sets determined 
using MLR (Table 2) is shown as the horizontal line indicated 
with R2. 

Fi t t ing random number da ta sets using neura l net­
works is easy because the da ta contains no "real" 
s t ructure . This is why s t ructured da ta sets were 
examined. The s t ruc tura l da ta sets, however, suffer 
from the problem t h a t a l though they contain the 
artificially imposed relat ionships between the input 
variables and the target , they do not contain the 
"natura l" relat ionships t h a t occur between the input 
variables in a real da ta set. This s tudy has therefore 
chosen a number of real QSAR da ta sets to examine. 

R e a l QSAR E x a m p l e s . For each of the real QSAR 
da ta sets, ne twork t ra in ing demonst ra ted t h a t the 
correlation coefficient increases wi th the addition of 
hidden layer uni t s (Figures 6 - 9 ) . In only two cases did 
the networks resul t in correlation coefficients higher 
t h a n those obtained us ing MLR (Figures 6, 9, eqs 1, 6, 
Table 1). In the l inear example, Q values less t h a n 6.0 
provided R2 values exceeding t ha t using MLR, while the 
quadrat ic plus indicator da ta set exceeded the MLR 
correlation coefficient a t Q values less t h a n 3.0. It 
should be remembered t h a t in our t ra in ing procedures 
the squared t e rms and indicator variables were not 
provided as input to network t ra ining. The networks 
have therefore found the rules associated with the 
"nonlinear" relat ionships of the input properties to the 
ta rge t da ta . To emphasize these resul ts , the MLR 
equat ions were also generated without the square or 
indicator t e rms (equations, 3, 5, 7, Table 1), and these 
values have been indicated on Figures 7—9. As can be 
seen from these figures, in all th ree cases the networks 
have performed well a t Q values less t h a n 8.0 and far 
exceed the fit using MLR. One major difference be­
tween the s tructured and real da ta sets is t ha t indicator 
variables from real QSAR studies are used to m a r k 
compounds from different s t ructura l classes or contain­
ing part icular s t ructural features and as such represent 
"real data". The purpose of our investigations has been 
to examine the claims t h a t neura l networks are able to 

Q 
Figure 6. Plot showing the results of multiple linear regres­
sion using traditional statistics and neural networks for the 
"linear" QSAR data set.22 The correlation coefficient has been 
plotted against Q. The top curve represents training of the 
data using networks employing a 3-n-l architecture with the 
data scaled between 0.2 and 0.8 (D). Testing the predictive 
performance of the networks used cross-validation employing 
both LOO (•) and leave-iV-out (O) procedures (N was ap­
proximately 10%). The horizontal lines represent the results 
obtained using traditional statistics listed in Table 1. The 
cross-validation result using traditional statistics used a LOO 
procedure. 

R' (w/o Ind) 

Q 
Figure 7. Plot showing the results of multiple linear regres­
sion using traditional statistics and neural networks for the 
"indicator" QSAR data set.21 The correlation coefficient has 
been plotted against (?. The top curve represents training of 
the data using networks employing a 2-re-l architecture with 
the data scaled between 0.2 and 0.8 (D). Testing the predictive 
performance of the networks used cross-validation employing 
both LOO (•) and leave-iV-out (O) procedures (N was ap­
proximately 10%). The horizontal lines represent the results 
obtained using traditional statistics listed in Table 1. In 
addition, a line has been drawn showing the correlation 
coefficient in which the indicator variable was omitted. The 
cross-validation result using traditional statistics used a LOO 
procedure. 

perform stat ist ical t a sks be t te r t h a n t radi t ional tech­
niques, and t h u s we have withheld indicator variables 
and quadrat ic t e rms from the neura l networks. We 
have not t ra ined networks which have included these 
t e rms since our expectation is t h a t they would perform 
well a t low values of Q (i.e., similar to the l inear "real" 
case). 

Although the t ra in ing resul ts outperformed MLR in 
two cases, th is does not give any indication of the 
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Figure 8. Plot showing the results of multiple linear regres­
sion using traditional statistics and neural networks for the 
"quadratic" QSAR data set.20 The correlation coefficient has 
been plotted against Q. The top curve represents training of 
the data using networks employing a 2-n-l architecture with 
the data scaled between 0.2 and 0.8 (D). Testing the predictive 
performance of the networks used cross-validation employing 
both LOO (•) and leave-AT-out (O) procedures CZV = 10%). The 
horizontal lines represent the results obtained using tradi­
tional statistics listed in Table 1. In addition, a line has been 
drawn showing the correlation coefficient in which the qua­
dratic variable was omitted. The cross-validation result using 
traditional statistics used a LOO procedure. 
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R 
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Figure 9. Plot showing the results of multiple linear regres­
sion using traditional statistics and neural networks for the 
"quadratic plus indicator" QSAR data set.21 The correlation 
coefficient has been plotted against Q. The top curve repre­
sents training of the data using networks employing a 2-n-l 
architecture with the data scaled between 0.2 and 0.8 (D). 
Testing the predictive performance of the networks used cross-
validation employing both LOO (•) and leave-iV-out (O) 
procedures (N was approximately 10%). The horizontal lines 
represent the results obtained using traditional statistics listed 
in Table 1. In addition, a line has been drawn showing the 
correlation coefficient in which the indicator and quadratic 
variables were omitted. The cross-validation result using 
traditional statistics used a LOO procedure. 

predictive ability of the network. As for the structured 
data sets, cross-validation provides some clues to pre­
dictive power, giving an indication of how well the 
network predicts when N cases are left out of the 
analysis. In this study we have performed two cross-
validation experiments where N = 1 and N = ap­
proximately 10%. These results are shown in Figures 
6—9. Both methods gave similar results, and in only 
the linear case did correlation coefficients rise above 

1.01 

0.9 

0.8 

R 0.7 

0.6 

0.5 

0.4 

Q 
Figure 10. Diagram showing the training and test set results 
using neural networks for the "linear" data set. Two trials 
were conducted using separate sets of 17 test compounds 
removed from the data set. Results are shown as the correla­
tion coefficient plotted against Q for training, trail 1 (D) and 
trial 2 (A). Using these trained networks, predictions of 
activity were made for the relevant test set which are also 
shown as the correlation coefficient, trial 1 (•) and trial 2 (A). 

that obtained using MLR. The linear results also 
differed from the nonlinear examples as the cross-
validated R2 increased with additional hidden layer 
units. In all cases the behavior of the cross-validated 
results was variable at low values of Q. Thus, although 
the networks performed well in training, they did poorly 
in prediction as measured by cross-validation. Argu­
ments may be put forward which suggest that these 
results are a consequence of over-training and thus 
highlight a shortcoming of the use of networks to 
perform MLR. Conversely, networks are able to fit the 
more complex data sets without the need to specify 
nonlinear terms and appear to predict better than the 
regression models without these variables. 

A more effective way of testing predictive ability is 
to use a train/test set procedure. The generation of test 
and training sets requires careful consideration as both 
sets should be representative of the entire data set. 
Cross-validation, on the other hand, leaves every com­
pound in the set out once for testing, and unless the 
data set is particularly well-behaved, in terms of the 
disposition of compounds in parameter space, cross-
validation will select some very unsuitable (i.e., outlier) 
compounds. In this work, hierarchical cluster analysis 
was used to choose representative test compounds. To 
illustrate this, Figure 1 shows a section of a dendrogram 
highlighting the compounds chosen for testing. Where 
more than one compound was present in a cluster, the 
choice of a representative test compound was arbitrary. 
Results for both the training and test sets using a 
network regression are shown in Figures 10—13. The 
linear example gives comparable results to the struc­
tured linear data sets (Figure 2) in that for trials 1 and 
2 the correlation coefficient increases as the number of 
hidden units is incremented (Figure 10). Similarly, the 
trend for the test results is a reduction in correlation 
coefficient as Q decreases. 

Training for the indicator and quadratic plus indicator 
data sets also shows a gradual increase in R2 as g 
decreases (Figures 11 and 13). The test results are more 
erratic and in a number of places the test results rose 
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Figure 11. Diagram showing the training and test set results 
using neural networks for the "indicator" data set. Two trials 
were conducted using separate sets of 18 test compounds 
removed from the data set. Results are shown as the correla­
tion coefficient plotted against o for training, trial 1 (•) and 
trial 2 (A). Using these trained networks, predictions of 
activity were made for the relevant test set which are also 
shown as the correlation coefficient, trial 1 (•) and trial 2 (A). 
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Figure 12. Diagram showing the training and test sets 
results using neural networks for the "quadratic" data set. Two 
trials were conducted using separate sets of 18 test compounds 
removed from the data set. Results are shown as the correla­
tion coefficient plotted against e for training; trial 1 (D) and 
trial 2 (A). Using these trained networks, predictions of 
activity were made for the relevant test set which are also 
shown as the correlation coefficient, trial 1 (•) and trial 2 (A). 

above the levels of the training set. Interestingly, for 
the first trial set for the quadratic case, the test results 
far exceeded the i?2 values for the training set (Figure 
12). This result was indeed surprising, and the experi­
ment was repeated following a check of the relevant 
BIOPROP script file to ensure that the training and test 
results had not been swapped. In addition, a second 
training and test set were created to again repeat the 
experiment. This second trial behaved as expected with 
the test results falling below the training set (Figure 
12). To further investigate this result we examined 
plots of predicted (derived using eq 4, Table 1) and 
observed values of the biological activity used for the 
quadratic case marking the test compounds for trials 1 
and 2, respectively (Figures 14, 15). At first sight, the 
plots appeared to show that the test compounds chosen 
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Figure 13. Diagram showing the training and test set results 
using neural networks for the "quadratic plus indicator" data 
set. Two trials were conducted using separate sets of 14 test 
compounds removed from the data set. Results are shown as 
the correlation coefficient plotted against Q for training, trial 
1 (•) and trial 2 (A). Using these trained networks predictions 
of activity were made for the relevant test set which are also 
shown as the correlation coefficient, trial 1 (•) and trial 2 (A). 

£ 

a m 

Observed 
Figure 14. Plot of predicted against observed biological 
activities for the real quadratic QSAR example derived using 
eq 4, Table 1. Compounds represented with a (D) symbol was 
used as test compounds for trial 1 and the remaining com­
pounds (•) comprised the training set. 

were satisfactory representatives of the entire data set. 
On closer inspection, however, it can be seen that for 
trial 1, the test compounds fall closer to the line of 
perfect prediction. As this test set does not include some 
of the "outliers" that are present in the other set this 
may explain the improved prediction results. A check 
using MLR was carried out on both training and test 
sets. Regression equations were derived for each of the 
32 training set compounds, and the activity was pre­
dicted for the 18 test cases (Table 3). As can be seen, 
the test set prediction for trial 1 gave a correlation 
coefficient of 0.905, considerably higher than the cor­
relation coefficient of the training set. In accord with 
the network results, the test set prediction for trial 2 
gave a correlation coefficient lower than that of the 
training set. The equations derived from the training 
sets are shown in Table 3 where it can be seen that the 
regression coefficients are considerably different. 
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F i g u r e 15. Plot of predicted agains t observed biological 
activities for the real quadra t ic QSAR example derived us ing 
eq 4, Table 1. Compounds represented with a (D) symbol were 
used as t e s t compounds for t r ia l 2 and t h e remain ing com­
pounds ( • ) comprised t he t r a in ing set. 

Table 3. MLR Results for the Quadratic Training/Test Data 
Sets 

trial equation n R2 s F 

1 training log(l/Z)4o) = -1.16fJm
2 - 32 0.730 0.26 25.3 

0ASRm + 0.66PXa + 0.58 
l t e s f 18 0.905 
2 training log(l/D4o) = -1.60flm2 - 32 0.861 0.17 58.1 

0.16i?m + 0.51p^Ta + 1.65 
2 test" 18 0.800 

" The test set correlation coefficients were calculated by compar­
ing predicted results from the training set MLR equation with 
observed results. 

Conclusions 
The results that we have found for both the structured 

data sets and the real QSAR sets are broadly in 
agreement with what we found using random number 
data.10'12 That is to say, increasing the number of 
connections in a network (i.e., decreasing Q) leads to 
higher correlation coefficients, and this may be why it 
appeared that networks were out-performing traditional 
methods in earlier reports. The advantage of using 
structured data and real data is that it is possible to 
test predictions. The predictive ability of the networks 
was generally poor compared with how well they 
performed in fitting. 

Two of the most important aspects of quantitative 
structure-activity relationship studies is that they are 
able to explain biological activity in a series of com­
pounds and to predict activity in either test compounds 
or novel targets. This has particular importance in the 
pharmaceutical and agrochemical industries where a 
QSAR may be used to assign synthetic priorities and 
thus directly reduce costs. Consequently, we have 
directed some effort to an assessment of the predictive 
ability of neural networks. Leave-one-out cross-valida­
tion is an obvious way to check predictions but is not 
necessarily the best; leave-iV-out is more realistic but 
introduces the complication of compound choice. The 
training/test protocol is preferred, but we have demon­
strated the difficulty in the adequate choice of such sets, 
even using a multivariate technique such as cluster 
analysis. 

The advantages of using neural networks to fit QSAR 
data are that the functional form of the relationship 
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does not have to be specified and that indicator variables 
are not required in order to combine subsets of com­
pounds in one equation. The disadvantages of neural 
networks are that it is difficult to assess importance/ 
contribution of individual terms, and there is no equiva­
lent to "fit" statistics as in regression. There are 
dangers of chance effects, and it is not easy to identify 
these in advance; in addition, it appears that networks 
perform poorly in prediction. Of course, one aspect not 
discussed here is the computation time required to set 
up and train these neural networks. As might be 
expected, the network results took considerably longer 
to obtain than MLR (for example, some of the cross-
validation experiments took several hours to complete 
on a Silicon Graphics 4D/35 workstation). 

Choice of network architecture (number of hidden 
units) is clearly critical and, from the data sets exam­
ined here, appears to be dataset dependent. In our 
previous work10,12 we have shown there are critical g 
values below which chance effects become a problem, 
but it is not possible to give general guidelines for the 
choice of Q values for the analysis of real data sets. 

It appears to us that the disadvantages of neural 
networks outweigh their advantages, at least for the 
type of networks (feed forward back propagation) that 
we have examined here. This is not to say that other 
network architectures or applications other than MLR 
may not prove of value in the investigation of the 
complex relationships between chemical structure and 
biological activity. For example, a neural network has 
been shown to provide a novel method for the low-
dimensional display of multivariate data,27 and this has 
been used with some success in the investigation of 
QSAR's.27'28 
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used to produce Table 1 represent ing the four "real" QSAR 
da tase t s (7 pages). Ordering information is given on any 
current mas thead page. 
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